Showing posts with label 5 december 2013. Show all posts
Showing posts with label 5 december 2013. Show all posts

Wednesday, 4 March 2015

Storm Surge 2013 : One Year On - Part Four : Spurn

by @cloudskinner

This is the fourth and final installment of our mini-series looking back over the year since the 5 December 2013 storm surge, which flooded many areas in the Humber Estuary and along the east coast of the UK. The first part, Modelling the Surge, looked at the research that has been conducted since the storm surge and has advanced our knowledge and understanding of these events in the Humber. Part Two, What we Learntfocused on the 2014 Humber Conference and the lessons that have been learnt over the year. Last week guest blogger, Jazmin Scarlett, told us about some of the often unseen impacts of flooding, the mental health issues that can arise, and how communities band together after disasters.

For the final part I want to take a longer look into the future and try and predict what it has in store for Spurn. Spurn, or Spurn Point as it is commonly known, is a piece of land that resembles a spit, sweeping out from the edge of the Holderness Coast and round into the estuary. It is important for several reasons: it hosts the signalling station for the Association of British Ports (ABP), kind of an air traffic control but for shipping; it is home to lifeboat crews (formerly permanently, with their families, but now just the crews whilst on shift), providing them quick and easy access to the North Sea and the estuary; it is an important site for migrating bird life, being a National Nature Reserve owned by Yorkshire Wildlife Trust; it keeps the mouth of the estuary narrow – it is not known what effect a wider mouth would have but it is expected that it could lead to a narrower channel with implications for shipping; and finally, it acts to guard the estuary from the full ravages of storms and waves.

When evaluating the true impact of the 5 December 2013 storm surge one cannot ignore Spurn. One of the most dramatic scenes from that night was the damage done to the landform, as highlighted in the LiDAR images below.






The breach at Spurn as shown by LiDAR data. Light Detection and Ranging (LiDAR) techniques uses rapid pulses of laser light to measure the elevation of the ground, both rapidly and in high detail. The top image shows the breached section of Spurn before 2013, and bottom image shows the same section measured shortly after the 5 December 2013 event 
(LiDAR data collected and provided by the Environment Agency).

It is clear that extensive damage was done by the waves and high water levels during the storm surge. The water will have over topped the narrow spit of land that separates the sea from the estuary, and washed the embankment down towards the estuary – you can see in the image that the bank has gone, and a mound of material has built to the left, on the estuary side.

There once was a road here at the breach site 
(author's own photo taken November 2014)

To understand the implications of this, and what the future might be, we need to delve into the past of Spurn. There are two theories behind the formation of Spurn which have emerged from two former University of Hull academics -
  1. George de Boer long maintained that Spurn was a spit – material eroded from the Holderness Coast washes down via longshore drift, and is deposited as a long spit in the form of Spurn. Over time as the coast line retreats, this spit will be rapidly destroyed and another will form further back in line with the coast.
  2. John Pethick disagreed however – He argued that Spurn was not a spit as such and had not retreated over time through repeated cycles of destruction. Rather, the end of Spurn is an island and had been in a fixed position throughout history, whilst the area between the island and coast is in a constant state of flux, sometimes forming a spit, sometimes a chain of islands and sometime open channel and sand banks. Although the location of this region has shifted over time with the coast, the end of Spurn has remained.
Until the 2013 storm surge both these theories were just academic. In his chapter of Neale and Flenley’s 1981 book, ‘The Quaternary in Britain’, de Boer recounts the recent history of Spurn and tells a tale of how it became a very man-made feature. He claimed that a cycle of destruction was taking hold in 1849, initiated by a violent storm (probably not unlike 5 December), and within a few years several wide and deep breaches formed along the narrow spit as it were then.

Water at high tide washing over the breached section of Spurn 
(author's own photo taken in November 2014)

In response, and to maintain the lighthouse and lifeboat crews housed there, the government at the time funded works to fill the breaches and huge loads of chalk from Barton-upon-Humber were dumped into the channels to fill them. Spurn came into the hands of the military and prior to WW1 the defences were bolstered and groynes put in place to let the spit grow. During both World Wars Spurn played an important role, not least in monitoring for possible enemy U-Boats infiltrating the estuary. It even had a railway line until 1951, and withstood the infamous 1953 storm surge with little damage.

In the 1960’s Spurn passed from military hands into the Yorkshire Naturalist’s Trust and eventually Yorkshire Wildlife Trust’s ownership, and the focus shifted from maintaining the hard, man-made structures of Spurn to the conservation of its environment and wildlife – as such the investment and work done to retain the defences has significantly decreased. I am sure George de Boer, if he were alive today, would suggest that the breach is the beginning of the cyclic destruction of Spurn that was stalled in the 1840’s.

View across the full breached section 
(author's own photo taken in November 2014)

I’m more inclined to side with John Pethick, however. Even if we were to just let nature take its course, I cannot envisage Spurn being utterly destroyed and replaced further into the estuary, nor do I think the evidence is strong for that having happened in the past, but it is clear that without huge investment to rebuild the spit as it were before 5 December, the nature of Spurn is going to change and will be in flux.

To predict what will happen to Spurn in the future, as the Holderness Coast retreats further back and sea levels rise, we need to adapt our models to be able to simulate some of these scenarios. Equally, it is important that we turn again the research of George de Boer and John Pethick, dig even further and try to understand the nature of Spurn; what it is, how it formed and how it has changed naturally in the past. Understanding that is the key to understanding its future.

Thanks to the Environment Agency and the Geomatics Team for the provision of LiDAR data used in this blog. This data was provided to University of Hull as part of the Dynamic Humber Project.

de Boer, G., 1981. Spurn Point : Erosion and Protection after 1849. IN: Neale, J., and Flenley, J., (eds). The Quaternary of Britain : Essays, reviews and original works on the Quaternary published in honour of Lewis Penny on his retirement. Pages 206 - 215. Pergamon Press, Oxford.

Wednesday, 25 February 2015

Storm Surge 2013 : One Year On - Part Three : Community Resilience

In Part 2 last week, the blog looked at some of the lessons learnt a year on after the 5 December 2013 storm surge in the Humber. This week the post come from guest blogger Jazmin Scarlett. Jazmin is a PhD student with a specialism in natural hazard response and mitigation, and offers her insights from her experience in how communities respond after natural disasters. In this post we expand our look, out of the Humber Estaury and southwards along the east coast of the UK, to Boston.

By Jazmin Scarlett


On the night of 5 December 2013 the Humber Estuary experienced its worst floods ‘since 1953.’ The main natural hazard that the country must co-exist with is flooding, and this post is going to discuss how despite its rather common occurrence across the country, we, as the British people, are not considering every factor when trying to mitigate and adapt to it.

In December 2014, £2.3billion was granted to the defence against flooding to protect 300,000 homes. We have known how bad flooding can get in this country and yet, in my opinion, the response has been rather slow. Even then, throwing money at the situation needs to be managed carefully and should address all the problems, not just the ones that everyone can physically see.

The Boston Stump (by Martin Clark)

The BBC Look North special report a year after the 2013 storm surge it showed how the people of Boston have been coping with some of the often unreported effects of flooding. Some people’s businesses were still suffering, some people’s homes were still being repaired, and some, unfortunately, were experiencing mental health problems. It is not unusual for mental health problems to arise after events like 5 December 2013, in fact it should be expected and mitigated for. It depends on a certain number of factors. One depends on factors, such as the actual experience the individual had: for example, farmers who lost their livelihoods and saw the deaths of their livestock in the 2003 East Gippsland bushfires in Victoria, Australia, experienced shock and post-traumatic stress (Whittaker et al., 2012). Those in Boston who lost properties and are still waiting for their lives to return back to normal told Look North that they are experiencing depression.

Another depends on the individual’s (and the community’s) coping strategies in terms of psychosocial resilience and physical mitigation strategies (Cashman and Cronin, 2008). Physical mitigation strategies usually involve engineering solutions such as the Thames Barrier, monitoring systems such as the Flood Alerts provided by the Environment Agency and land-use restrictions (potentially exacerbated by properties being built on floodplains). These physical solutions are far more obvious than psychosocial resilience, not just for flooding but for other hazards as well. Taylor (1999, in Cashman and Cronin, 2008) states that adaptations for community recovery from a disaster largely depends on simple explanations for the occurrence of an “inconceivable” event.

The Thames Flood Barrier (by Ian Capper)

It appears only when push comes to shove, when we lose properties, livelihoods, lives and money do we react to the hazard. Why must it be only when the hazard has occurred and caused all the damage that we say “we should do something about this.”

Another angle to this could be why can we not co-exist with the hazard? Kelman and Mather’s (2008) paper looks at how people living with volcanoes can become more resilient but I believe it rings true for flooding and other hazards as well. It details a ‘sustainable livelihoods approach’ in which they state that to live with the risk means accepting that the hazard is a usual part of life and that rather just surviving or reacting to the extreme event when it occurs, living with the risk allows the community to create and maintain habitats as well as livelihoods which might lead to the hazard becoming less of a danger and more integrated into day-to-day life.

We are a very resourceful species and certainly in this country have the knowledge of flooding impacts but why are we not more proactive about it? Members of the Department of GEES, University of Hull research various aspects of flooding, and other hazards. An aspect of this is education: I have always been passionate that all individuals at risk of hazards ought not be ignorant to that risk, and part of that is engaging communities in mitigating against our 'public enemy number one'.

There are psychological means to try and explain why people are ‘caught by surprise’ by a hazard, but in reality that should not be the case. I will give an example that I touched upon in my Masters' thesis.

It is a concept called 'saliency' – we make sense and prioritise our daily issues/threats. I do not think about flooding every day. Why should I? It not is looming over the horizon right now and I have other things to worry about. I have to think about managing my money and my disability. I worry about my grandmother. I hope my parents are coping with being parents to four newly adopted kids. I hope my best friend is doing alright in her new job. I concern myself with personal aspects of my life. Every person will be concerned about different things, based on what they value most. I value the wellbeing of my family and friends most. I myself, have been fortunate enough to not experience a flood so therefore, I will take no further action until the hazard is impending and will threaten the safety of my friends and colleagues.

Aerial view of Boston (by Richard Croft)

It is not all bad. The floods in Boston fostered social cohesion and a form of community resilience. In the face of adversity, neighbours who barely knew one another came together to use their own skills, knowledge and goodwill as a joint force to help ease and spread the stress of the situation and get everyone out of danger. After the event, the common ground these people shared is the experience of surviving the potentially life threatening situation. The social cohesion will now continue and hopefully live on to continue aiding one another when eventually the authorities leave and no longer offer the short-term recovery support. The aid could be physical: helping rebuild properties. People often fail to realise that counsel is just as important as physical aid. Local practices will experience an increased number of mental health related cases but sometimes, the social cohesion, the fact that the person was physically there, experiencing what they were experiencing, can be a useful and powerful recovery mechanism.

Social cohesion is also not a new concept to the government and researchers in this country. There are several governmental reports on it. An example is: “Guidance on the duty to promote community cohesion.” You just need to read the title to know how prominent it has been on the agenda. Even the House of Commons has a collection of reports on it and there are researchers looking at resilience against flooding here in the UK.

So if the government has been trying to be proactive in fostering social cohesion as a form of community resilience, why does it appear to be reactive? In all honesty, resilience is hard to measure unlike vulnerability and risk (even then they can be hard to measure). You will not know how effective the community resilience is or where to improve it until the hazard event occurs. I am researching resilience in volcanic environments and although there are indicators to help identify its presence, I do not know how resilient the communities are unless I observe it in a volcanic crisis. And that is a little dangerous.

I believe that the floods experienced in 2013, along with every other major flooding event this country has faced, have largely provoked a reaction to them. In the short-term, money is put in to physical mitigation against it and the short-term recovery programs. If this country is to overcome these ‘surprises,’ more effort needs to be made on being proactive, actively engaging in mitigation and adaptation between flood events. A lot could get done on the community scale in that time, yet it would require the support of everyone. However, people will turn mainly to what they believe will bring them security: the physical presence of flood defences.

Let the authorities deal with that, but get the community involved as well, it will foster another form of community resilience: social networks. Giving the community a sense of empowerment and confidence to prepare will help them mentally cope with the arrival of another flood event and hopefully, lead the country into being proactive and not reactive against our main natural hazard threat.

Whittaker J., Handmer J. and Mercer D. (2012) Vulnerability to Bushfires in Rural Australia: a Case Study from East Gippsland, Victoria. Journal of Rural Studies. Vol. 28. Pg. 161-173.

Cashman K.V. and Cronin S.J. (2008) Welcoming a Monster to the World: Myths, Oral Tradition and Modern Societal Response to Volcanic Disasters. Journal of Volcanology and Geothermal Research. Vol. 176. Pg. 407-418.

Kelman I. and Mather T.A. (2008) Living with Volcanoes: the Sustainable Livelihoods Approach for Volcano-Related Opportunities. Journal of Volcanology and Geothermal Research. Vol. 172. Pg. 189-198.

Wednesday, 18 February 2015

Storm Surge 2013 : One Year On - Part Two : What we Learnt

by @cloudskinner

This is the second post of our mini-series about the 5 December 2013 storm surge, and its legacy for the Humber region in particular. Last week's post highlighted some of the research that had been undertaken after the surge, and why this is important for understanding the future flood risk in the Humber, especially in the context of climate change which is predicted to bring bigger and more frequent storms, as well as a steadily rising sea level. This post looks at what we have learnt about the storm surge a year after the event, and summarises the presentations given at the 2014 Humber Conference held at Hull's Guild Hall in mid November, organised by the Humber Nature Partnership. You can view individual presentations using the links on the presenters' names.

Dr Susan Manson from the Environment Agency (EA), a co-author on the research highlighted last week, began the conference by providing some of the key scientific details about the storm surge. It has commonly been held that the devastating 1953 storm surge was the baseline for these events in the Humber - the 2013 storm surge is currently the largest on record, but there have been five other events larger than 1953 in between. The fact that the devastation and loss of life has never been as extensive is true testament to the defences and plans that have been invested in since that time. For the recorded tide from the EA gauge at Immingham, which has been recording since 1963, 2013 was the highest ever water level, and by some margin.


Immingham Dock Oil Terminal - The water level recorded here on 5 December 2013 was the highest on record (by "Chris")

Susan gave some figures about the surge. 116 flood warnings were issued. 1,170 properties were flooded around the Humber estuary, but the defences protected a staggering 156,000 further from the surge. It normally takes a tidal crest more than an hour to propagate from Spurn Point, at the mouth of the estuary, to Blacktoft Jetty along the River Ouse, but the surge covered this distance in just 15 minutes – described as “like a wall” by some.

40 km of defences were overtopped but most of them held, with only two points where the flood defences themselves were breached (south of Cleethorpes on the south bank, NE Lincolnshire, and near Skeffling, on the north bank, E Yorkshire). The EA has been busy strengthening and repairing defences as fast as they can. Philip Winn of the EA described how they are using X-Rays to check the integrity of defences to ensure they are up to standard, and how the defences at Alexandria Dock have been improved (all of the flooding in Hull City Centre emerged from overtopping the 1 km stretch here). Phillip also described how the EA are looking to the future, reconsidering the Humber Strategy drawn up before the flood and going to the Government with a request for £1bn to upgrade the estuary’s defences to a 1 in 200 year standard.


Flood defences being repaired shortly after the storm surge - Chowder Ness, near Barton-upon-Humber, on the south bank, N Lincolnshire (by Jonathan Thacker)

But for many people the misery of the storm surge continues. One of the worst affected places is the small town of South Ferriby on the south bank. The defences overtopped and flooded the majority of the houses there and depositing large quantities of silt and mud inside. One of my old school friends described on Facebook how she sat on the stairs watching the water rise as her children slept upstairs. For many it was over 6 months until they could move back into their houses.

The Cemex factory was very badly damaged and a full year after the flooding it still has not returned to production. Kevin Groombridge of the firm described how the flooding did not just bring water, but also sediment and salt. These clogged machinery and corroded the electrics of the site, which were all at ground level. Having never flooded in 75 years they nearly did not heed the flood warnings from the EA, but the Director of the site insisted the workforce move. It is possible that he saved numerous lives by that decision and thankfully that is just speculation.

The Cemex Cement Factory at South Ferriby (by David Wright)

Kevin described how immediately after the flood a ‘Blitz-spirit’ emerged among the staff, and how the factory manager had to buy new office furniture, laptops, stationery and even diesel generators on a credit card in order for them to continue working. Literally everything on the factory site had been destroyed.

Agriculture was also badly hit. Andrew Wraith of Savills UK, an Agribusiness, described some of the impacts that has struck them. On their Yokefleet Estate they have 34 residences and 22 of those flooded, and 1000 acres of their 2500 were flooded to a depth of 4 ft., and a green pea factory was flooded. Some of this land was flooded for 2 -3 weeks but was alleviated by pumps. A major issue they faced was soil erosion caused not by the flooding but the speed of the water draining away.

They lost many crops, both planted and stored, and Andrew put the cost of these losses in seven figures. But Andrew also said that they considered themselves lucky – when the surge hit they anticipated that their crop loss would be almost 100% but it was actually a loss of 5-10% of the yield. He put this down to the dry conditions prior to the surge allowing for effective drainage of the damaging salt water. The timing of the surge was also fortunate, as had it had been in the spring or the summer they would have felt a two year impact on yields.


Behind Hull's Tidal Barrier on 5 December 2013 - It the water level came within 40 cm of overtopping (by @Tom_Coulthard)

And it is this sense of being lucky that I want to end this post on. If you were one of the residents in South Ferriby, out of your home for the better part of a year, you will not feel lucky, and you weren’t. If you live in one of the 156,000 properties protected by the EA’s defences, a product of decades of work and investment, you were also not lucky but fortunate that we have invested in our excellent EA. But in many ways the Humber estuary could be described as being lucky as stories emerge of near misses and close calls. It was probably only the decision by one Director at Cemex that saved the lives of their workers. The tidal barrier at Hull came within 40 cm of overtopping and putting at risk hundreds of properties along the River Hull – if the surge was timed with the high tide, rather than 2 hours apart, it could have made the difference and spilled over. If the weather in the prior days had been wet then the salty flood water would not have drained as quickly as it did, this fact saving much farmland and properties from further damage.

In all the defences of the Humber were put under considerable strain by a massive, unusual, and largely unprecedented event, but came out on top. Just. Those responsible for them should be praised that they withstood the barrage, and that there was no loss of life. But we should not become complacent – we may never witness another event of that scale again in our lifetime, but as our climate warms, becomes stormier, and the sea level rises, the chances of another, or larger, storm surge in the Humber increases. We need to continually work to keep our defences ready.